K – NEAREST NEIGHBOR

            Algoritma k-nearest neighbor (k-NN atau KNN) adalah sebuah metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut.
Data pembelajaran diproyeksikan ke ruang berdimensi banyak, dimana masing-masing dimensi merepresentasikan fitur dari data. Ruang ini dibagi menjadi bagian-bagian berdasarkan klasifikasi data pembelajaran. Sebuah titik pada ruang ini ditandai kelas c jika kelas c merupakan klasifikasi yang paling banyak ditemui pada k buah tetangga terdekat titk tersebut. Dekat atau jauhnya tetangga biasanya dihitung berdasarkan jarak Euclidean.
Pada fase pembelajaran, algoritma ini hanya melakukan penyimpanan vektor-vektor fitur dan klasifikasi dari data pembelajaran. Pada fase klasifikasi, fitur-fitur yang sama dihitung untuk data test (yang klasifikasinya tidak diketahui). Jarak dari vektor yang baru ini terhadap seluruh vektor data pembelajaran dihitung, dan sejumlah k buah yang paling dekat diambil. Titik yang baru klasifikasinya diprediksikan termasuk pada klasifikasi terbanyak dari titik-titik tersebut.
Nilai k yang terbaik untuk algoritma ini tergantung pada data; secara umumnya, nilai k yang tinggi akan mengurangi efek noise pada klasifikasi, tetapi membuat batasan antara setiap klasifikasi menjadi lebih kabur. Nilai k yang bagus dapat dipilih dengan optimasi parameter, misalnya dengan menggunakan cross-validation. Kasus khusus di mana klasifikasi diprediksikan berdasarkan data pembelajaran yang paling dekat (dengan kata lain, k = 1) disebut algoritma nearest neighbor.
Ketepatan algoritma k-NN ini sangat dipengaruhi oleh ada atau tidaknya fitur-fitur yang tidak relevan, atau jika bobot fitur tersebut tidak setara dengan relevansinya terhadap klasifikasi. Riset terhadap algoritma ini sebagian besar membahas bagaimana memilih dan memberi bobot terhadap fitur, agar performa klasifikasi menjadi lebih baik.
Terdapat beberapa jenis algoritma pencarian tetangga terdekat, diantaranya:
·         Linear scan
·         Pohon kd
·         Pohon Balltree
·         Pohon metrik
·         Locally-sensitive hashing (LSH)
Algoritma k-NN ini memiliki konsistensi yang kuat. Ketika jumlah data mendekati tak hingga, algoritma ini menjamin error rate yang tidak lebih dari dua kali Bayes error rate (error rate minimum untuk distribusi data tertentu).
K-Nearest Neighbor (KNN) adalah suatu metode yang menggunakan algoritma supervised dimana hasil dari query instance yang baru diklasifikan berdasarkan mayoritas dari kategori pada KNN. Tujuan dari algoritma ini adalah mengklasifikasikan obyek baru bedasarkan atribut dan training sample. Classifier tidak menggunakan model apapun untuk dicocokkan dan hanya berdasarkan pada memori. Diberikan titik query, akan ditemukan sejumlah k obyek atau (titik training) yang paling dekat dengan titik query. Klasifikasi menggunakan voting terbanyak diantara klasifikasi dari k obyek.. algoritma KNN menggunakan klasifikasi ketetanggaan sebagai nilai prediksi dari query instance yang baru.

Algoritma metode KNN sangatlah sederhana, bekerja berdasarkan jarak terpendek dari query instance ke training sample untuk menentukan KNN-nya. Training samplediproyeksikan ke ruang berdimensi banyak, dimana masing-masing dimensi merepresentasikan fitur dari data. Ruang ini dibagi menjadi bagian-bagian berdasarkan klasifikasi training sample. Sebuah titik pada ruang ini ditandai kelac c jika kelas cmerupakan klasifikasi yang paling banyak ditemui pada k buah tetangga terdekat dari titik tersebut. Dekat atau jauhnya tetangga biasanya dihitung berdasarkan Euclidean Distance yang direpresentasikan sebagai berikut :
dimana matriks D(a,b) adalah jarak skalar dari kedua vektor a dan b dari matriks dengan ukuran d dimensi.
Pada fase training, algoritma ini hanya melakukan penyimpanan vektor-vektor fitur dan klasifikasi data training sample. Pada fase klasifikasi, fitur-fitur yang sama dihitung untuk testing data (yang klasifikasinya tidak diketahui).  Jarak dari vektor baru yang ini terhadap seluruh vektor training sample dihitung dan sejumlah k buah yang paling dekat diambil. Titik yang baru klasifikasinya diprediksikan termasuk pada klasifikasi terbanyak dari titik-titik tersebut.
Sebagai contoh, untuk mengestimasi p(x) dari n training sample dapat memusatkan pada sebuah sel disekitar x dan membiarkannya tumbuh hingga meliputi k samples. Samplestersebut adalah KNN dari x. Jika densitasnya tinggi di dekat x, maka sel akan berukuran relatif kecil yang berarti memiliki resolusi yang baik. Jika densitas rendah, sel akan tumbuh lebih besar, tetapi akan berhenti setelah memasuki wilayah yang memiliki densitas tinggi. Pada Gambar 2.13 dan Gambar 2.14 ditampilkan estimasi densitas satu dimensi dan dua dimensi dengan KNN .
                                            
Gambar 1. Delapan titik dalam satu dimensi dan estimasi densitas KNN
dengan k =3 dan k = 5


                                              
                              Gambar 1. KNN mengestimasi densitas Dua Dimensi dengan k = 5
Nilai k yang terbaik untuk algoritma ini tergantung pada data. Secara umum, nilai k yang tinggi akan mengurangi efek noise pada klasifikasi, tetapi membuat batasan antara setiap klasifikasi menjadi semakin kabur. Nilai k yang bagus dapat dipilih dengan optimasi parameter, misalnya dengan menggunakan cross-validation. Kasus khusus dimana klasifikasi diprediksikan berdasarkan training data yang paling dekat (dengan kata lain, k = 1) disebut algoritma nearest neighbor.
Ketepatan algoritma KNN sangat dipengaruhi oleh ada atau tidaknya fitur-fitur yang tidak relevan atau jika bobot fitur tersebut tidak setara dengan relevansinya terhadap klasifikasi. Riset terhadap algoritma ini sebagian besar membahas bagaimana memilih dan memberi bobot terhadap fitur agar performa klasifikasi menjadi lebih baik.

KNN memiliki beberapa kelebihan yaitu ketangguhan terhadap training data yang memiliki banyak noise dan efektif apabila training data-nya besar. Sedangkan, kelemahan KNN adalah KNN perlu menentukan nilai dari parameter k (jumlah dari tetangga terdekat), training berdasarkan jarak tidak jelas mengenai jenis jarak apa yang harus digunakan dan atribut mana yang harus digunakan untuk mendapatkan hasil terbaik, dan biaya komputasi cukup tinggi karena diperlukan perhitungan jarak dari tiap query instance pada keseluruhan training sample.

Share this

Related Posts

Previous
Next Post »